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that will exhibit the key characteristics of good design: strong coupling
within sub-problems, and weak coupling between them.

A scan of the graph decomposition algorithms review that none of the existing
techniques is particularly well suited for use in Systematic Design
Methodology. In this report, a clustering model on a graph is defined,
using the concept of *aturalc''r iigh density"'clusters which are densely-
connected subgraphs separated by relatively ew links. A graph decomposi-
tion techniques based on this liigh-density clustering model is developed
for identifying the best "n'-atural'" artition for a given graph. Numerous
examples are included to illustrate its effectiveness.
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EXECUTIVE SUMMARY

Complex design problems are characterized by a multitude of competing

requirements. System designers frequently find the scope of the problem

beyond their conceptual abilities, and attempt to cope with this difficulty

by decomposing the original design problem into smaller, more manageable

sub-problems. Functional requirements form a key interface between thle users

of a system and its designers. In this research effort, a systematic approach

has been proposed for the decomposition of the overall set of functional

requirements into sub-problems to form a design structure that will exhibit

the key characteristics of good design: strong coupling within sub-problems,

and weak coupling between them.

A scan of the graph decomposition algorithms review that none of the

existing techniques is particularly well suited for use in Systematic Design

Methodology, In this report, a clustering model on a graph is defined,

using the concept of "natural" or "high density" clusters which are densely-

connected subgraphs separated by relatively few links. A graph decomposition

techniques based on this "high-density" clustering model is developed for

-. identifying the best "natural" partition for a given graph. Numerous examples

are included to illustrate its effectiveness.
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1. Introduction

The cost of software development, testing, and maintenance in 1979 is

estimated to have exceeded $40 billion. In several military computer systems,

it has been found that about 80 to 90 percent of the acquisition costs go

for software (Computer, p. 62, January 1979). Yet, the approaches to software"

requirements definition and "architectural design", where the overall design

is initially divided into sub-tasks, are still largely intuitive and subjective.

It has been noted that many of the problems with managing such projects emanate

from mistakes and omissions made during these early decision stages. In one

study of project nianagers (Computer, p. 67, January 1979), the major problem

reported, with 100 percent agreement, was requirements specification.

The Systematic Design Methodology (SDM) research effort is directed at

helping to structure the early stages of system design, providing a quantita-

tive measure of design quality, improving the architectural design process,

and supporting the subsequent steps of the project life-cycle. By

"methodology" we mean: (1) a set of basic underlying concepts, (2) a set of

techniques and algorithms, and (3) a set of tools for implementing the

techniques (e.g., a computerized design support system).

The SDM concept is based upon four key steps: (1) formation of formal

implementation - independent functional requirements, (2) assessment of

interdependencies between requirements to form a graph structure, (3) decom-

* position of the graph into sub-graphs, and (4) interpretation of the sub-

graphs as design sub-problems.

STEP3, the graph decomposition step, is particularly important. In

* the design literature, an optimal partitioning of a project is typically

* & defined qualitatively as one where each task is well-defined and there is

* minimal interaction between individual tasks. Our aim is to identify or

develop a graph decomposition technique that would correspondingly partition
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a graph into well-connected subgraphs with minimal cross-links among them.

In Section 2, the results of a literature research on graph decomposition

techniques are presented. It is pointed out that the important problem:

"how many separate well-connected subgraphs are there?" did not receive much

attention, and that existing goodness-of-partition measures for finding the

best partition tend to favor extreme solutions (either partitions with

many small subgraphs or a few big subgraphs).

This leads to the development of a "high-density" clustering model on

a graph, in which high-density clusters can be perceived as well-connected

subgraphs separated by relatively few cross-links. The model is described

in Section 3, where a decomposition technique for finding the best partition

based on this clustering model is also given. Numerous examples are included

to illustrate the effectiveness of this new graph decomposition technique.

ii

*1
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2. Literature Research

The graph decomposition literature can be divided into two types:

(i) Criterion - optimizing techniques - in which the clusters of nodes are

formed by optimization of a goodness-of-partition criterion. (ii) Density

* or bond-energy or node-tearing techniques - in which clusters are formed by

searching for well-connected subgraphs separated by relatively few links.

2.1. Criterion-optimizing techniques

The majority of this type of techniques can be formulated as attempts

to partition the graph so as to optimize some predetermined criterion. For

example, many of them attempt to minimize the suni of the weights of the cross-

links between subgraphs. (See Kernighan and Lin (1970), Lukes (1974, 1975),

anc Christofides and Brooker (1976) for methods that operate under some size

constraints on the subgraphs, and see Ford and Fulkerson (1962) for an

unconstrained approach.) Most of the methods also assume that the number of

clusters (or subgraphs) has been decided a priori by the investigator, although

some do allow the number to be changed during the course of the analysis

(Huff, 1979). Except for Huff's (1979) work, the problem of how to choose

* the "correct" number of clusters (or subgraphs) was never addressed.

The differences between the methods lie primarily in the optimality of

the final solution and the efficiency of the computation algorithm. Gorinshteyn

(1969), Lukes (1975), and Christofides and Brooker (1976) all set out to

find the globally optimal solution; however, Gorinshteyn uses a branch-and-

* "bound strategy and Lukes take the dynamic programming approach, while

Christofides and Brooker adopt the tree search method. On the other hand,

' } Kernighan and Lin (1970) and Huff (1979) use an efficient interchange heuristic

to search for a locally optimal solution.

Except for Huff's (1979) interchange algorithm, the various criterion -

,p *.#
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optimizing techniques are not useful in the SDM context as they do not

address the problem of how to choose the "correct" number of clusters.

Unfortunately, the goodness-of-partition measure used by Huff has some

inherent problems. His measure M is defined as follows:

k k-I k
M Si - z C.Si=1i i=1 j=1+l iJ

where k = number of subgraphs
Li - (n. - 1)

Si = strength of subgraph i L 1 1 where L the number of) (n1) 1 t

links contained within sub-

graph i,

ni = the number of

nodes contained within sub-

graph i.
Lij

and Cij = coupling between subgraphs i and j - 13 where Lij = the number
13n. * n.i

of links connecting

nodes in subgraph i

to nodes in subgraph

j.
In spite of the fact that its definition has some intutitve appeal, the measure

M is not a useful criterion for comparing partitions with different number of

subgraphs as it favors a solution with large number of subgraphs. Specifically

whenever a single link is removed from a completely-linked subgraph of any

size, the value for M for the corresponding 2-subgraphs solution is greater

than that for the 1-graph solution!

The problem of finding a appropriate goodness-of-partition criterion

that is useful for comparing partitions with different number of subgraphs

is a difficult one. However, this problem does not exist when the number of

I I
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subgraphs is fixed. All criteria are equivalent to the sum of the weights

of the cross-links of the subgraphs, as minimizing this sum is equivalent

to maximizing the weights of the links within the subgraphs themselves.

But this sum does not provide a merit index for the corresponding partition.

To this end, we suggest using the following measure M* , which is a modifi-

cation of M:

k k-1 k
Z [Li  - (ni-1)] E E Li -

M4* = i=1 _i=1 j=i+1 J
k k-1 k

i ) - (ni-1)] z E n i  n2 i=1 j=1+1

Since M* is the difference of two weighted averages (the strengths and the

couplings), its value ranges from -1 to +1 with +1 indicating a perfect

partition. Hence, it is a reasonable index of merit for a given partition.

Unfortunately, M* is itself not a useful goodness-of-partition measure

as it also fails to do a good job in comparing partitions with different

number of clusters. In general, it favors a large number of similar-sized,

fully-connected subgraphs. However, there is some indication that it might

become useful when size constraints are put on the subgraphs.

2.2 Density or bond-energy or node-tearinq techniques

For a given graph, a natural concept of clustering suggests that there

0 should be parts of the graph (i.e., subgraphs) in which the nodes are densely-

connected, separated by relatively few cross-links. (For related concepts in

Euclidean space, see Zahn (1971), Hartigan (1975), and Wong (1979).) As we

shall see in Section 3, this concept can be used to define "natural" or

"high-density" clusters. Graph decomposition methods which use this approach
4

of seeking densely-connected subgraphs (or modal subgraphs) in the graph
,

will be described here. In general, each modal subgraph is taken to signify

a different cluster.

L__
i . .. ..... .. . .. . ... . ... .. .. .. ..
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The first method we will consider is the bond-energy algorithm due to

McCormick et al (1972). By permuting the rows and columns of the graph

adjacency matrix in such a way as to push numerically larger array element

together, their algorithm serves to identify the "natural groups" or "high-

density clusters" in the graph, as well as the associations of these groups

with one another. Thus, the bond-energy algorithm can be viewed as a density

method even though it tends to give excessive weights to large elements in

the array. Its main drawback is that the best partition is not explicitly

given and personal judgment has to be exercised to identify the subgraphs.

Moreover, its computational time increases with N , where N is the

number of nodes.

The central idea underlying the node-tearing techniques is to locate

the smallest separating sets - that is, the set of nodes with the lowest

cardinality such that their removal from the graph splits the graph into two

or more unconnected subgraphs. In effect, this type of technique searches

for nodes which are not densely connected with other nodes, and hence their

removal will reveal densely-connected subgraphs. Hence, the node-tearing

techniques are also density-related methods; but their aim is to locate "loose"

nodes (or low-density nodes) rather than the densely connected modal subgraphs.

An efficient heuristic algorithm for node tearing was developed by Sangiovanni-

Vincentelli et al (1977) in the context of electrical circuit design; the

computational expense is bounded by O(Nb) , where b is the number of links

or edges in the graph. The fact that the solution produced by this algorithm

is only locally optimal is a major concern, in spite of the fact that they

have incorporated quite a few intuitively sound strategies in improving

their algorithm. A minor deficiency of this algorithm is that it can only

be applied to an unweighted graph.

7 
7
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Andreu (1978, pp. 124-133) derived an algorithm for identifying leader

subgraphs, subgraphs that are non-overlapping and strongly coherent. The

partitioning procedure is then completed by assigning the left-over nodes

(if any) to the leaders. This approach is intuitively appealing and is

directly related to the "high-density" concept (see Section 3). However,

his effort fell short of describing the high-density clustering model on

a graph, and hence he has problems defining the assighment rules for the

leftover nodes.

It is clear that the density techniques are appropriate for use in

the SDM context. However, none of the existing techniques appear to be

completely satisfactory. In the next section, the high-density clustering

model on a graph will be described. Moreover, it will be shown how the optimal

partition into "natural" or "high-density" subgraphs can be derived from the

tree of high-density clusters on a graph. Another feature of the partitioning

algorithm related to this model is its flexibility in allowing the user

some control over the size of the resulting subgraphs or the number of sub-

graphs.

'*1

Li
-- I-. - - . .. 4W- , , . .. .. . .
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3. High Density Clusters on a Graph

3.1. The Hiqj-densit yCl usterin Models

For a given graph, clusters of nodes may be thought of as densely-

connected subgraphs separated from other such subgraphs by relatively few

cross-links. To formalize this concept we need to first define the density

contour on the link between any two nodes i and j ; the level of the

contour is uded to signify the extent of linkage or connectedness between

the two nodes. Intuitively, two nodes should not belong to the same cluster

simply because they are linked (see Figure 1),

Figure 1

Nodes i and j should not be in the same cluster.

nor should they be in the same cluster simply because they are both linked

to many different nodes (see Figure 2).

,i

Figure 2

Nodes i and j should not be in the same cluster.

However, they do belong to the same cluster if they are linked to each other

and are linked to many common nodes (see Figure 3).

V "K
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Figure 3
Nodes i and j should be in the same cluster

Using this neighborhood concept (which corresponds to the nearest neighbor

technique in statistical density estimation), the density contour on the link

between two linked nodes i and j is defined as follows:

n ij _ no. of nodes connected to both i and j (i and j included)
ij = uNij no. of nodes connected to ei-ther i or -j or both ( & j included)

(The contour between two un-linked nodes is defined to be zero.) Using this

definition, the density contour between nodes i and j in Figure 1, 2,

and 3 are respectively 2/8, 0, and 6/8. Moreover, the contour on each of the

links in Figure 1 has been computed and are given in Figure 4 to illustrate

the calculation.

I

Figure 4
Density Contours on an Unweighted Graph

For weighted graphs, the corresponding definition is
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1 +d 2Wi + KCC (Wik +Wjk)

uNij

where Wij = weight on the link between nodes i and j and C is the

set of nodes connected to both i and j (i and j excluded). Now, we

are ready to define the high-density clusters on a graph: Definition: A

high-density cluster at level d* on a graph G is a subgraph S such that

S is maximal among connected sets of nodes whose nodes are connected by

links with density contour - d*.

It is easy to show that the family of high-density clusters on a graph forms

a tree. An example of high-density clusters is given in Figure 5; the density

contours on the graph are taken from Figure 4.

i

Figure 5
The Tree of High-Density Clusters on a Graph

... a[ , . .
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As the density level d* is reduced, the subgraph S at level d*

gradually expands until suddenly, at some splitting level ds , it coalesces

with other subgraphs to form a much larger subgraph. These branching clusters

which cannot be expanded smoothly, are important in determining the tree

structure. They also signify the number of (high-density) modal subgraphs

in a given graph. For example, if there is only one such cluster, there is

only one modal subgraph and it would be artificial to partition the graph

in any way. A high-density cluster S is a branching cluster if every

cluster properly including it contains a cluster disjoint from S. The

branching high-density clusters form a tree that is a subset of the tree of

all high-density cluster.

3.2. The Minimum Spanning Tree Algorithm for Computing the Tree of High-
Density Clusters

Given a set of N nodes with density contour d(i,j), the algorithm

for finding the tree uf high-density clusters is as follows:

STEPI. Let i and j be the pair of nodes with the densest link, amalgamate

them to form a cluster I and define the density contour between that

cluster and any node k by

d(l,k) = max {d(i,k), d(j,k)}

STEP2. Repeat STEPI treating 1 as a node and ignoring i and j. The

amalgamation continues until all nodes are grouped into one large cluster.
,

(All clusters obtained in the course of the algorithm are high density clusters.)

It Is easy to see that this algorithm is equivalent to the classical minimum-

spanning tree (MST) algorithm. For published computational algorithm that

would produce the MST, see for example, Ross (1969) and Hartigan (1975).

Unfortunately, the standard tree-like clustering output is often mislead-

ing for partitioning purposes as it fails to report the neighborhood of

I -
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nodes that are not in any branching cluster. For example, in Figure 6,

the information concerninq node 2's connection to the branching suboraph,

fl, 3, 4, 5, 61 is completely lost in the tree representation.

3

Graph (density contours are shown) Tree output

Figure 6
Problem of Defining a Partition from the Tree output

Hence, we need an algorithm that would extract the correct partition from

the tree, perhdps by assigning "outlying" or "leftover" nodes to branching high-

density clusters using the notions of connectedness and level of density

contour.

3.3. Cxtractn i Partitions from the Tree of High Density Clusters

To extract the correct partitions from the tree of high density clusters,

we need to do the following:

STEPI. Determine the number of minimal branching clusters, call it k. (A

branching cluster is minimal if it does not properly contain another branch-

ing cluster).

STEP2. Identify the k minimal branching high-density clusters as leader

subgraphs.

STEP3. Assign each of the leftover nodes according to the following rules:

-level A: consider leftover node i, let node j be the one with

p ,~'L
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the highest contour level between it and node i, then node i and

node j will be in the same cluster;

-level B: (if ties exist at level A): consider leftover node i,

find the sum of the density on its links to various candidate branching

clusters (if a tie-node is a leftover node itself, this sum is defined

to be zero), and assign node i to the one with the largest sum;

-level C: (if ties exist at level B): random assignment among the

candidate branching clusters or among the other leftover nodes.

3.4. Illustrative Examples

Nineteen examples are included in this section to illustrate the effec-

tiveness of the high-density clustering approach. In Examples 1, 2, and 3,

the complete tree of high-density clusters is given together with the density

contour computed for the various links in the graph; but, in all subsequent

examples, only the tree of branching high-density clusters is shown. In

all cases, the partition obtained by the algorithm described in Section 3.3

are shown; in some, alternative solutions are also given to illustrate the

flexibility (though admittedly limited) of our method. The measure M*,

described in Section 2.2, will be used to indicate the merit or goodness of

each decomposition.

Example 1
AI
*Number of nodes = 9

Number of links = 18

Note 1: the density contours are in parentheses
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). , , , .

Two Branching Clusters; best partition is:

Subgraph 1: {4, 5, 8)

Subgraph 2: {1, 2, 3, 6, 7, 9}

Merit Index of Decomposition: M* = .7626..

Example 2

Number of nodes = 10

Number of links = 17

Note 1: The density contours are in parentheses.

II
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Two Branching Clusters; best partition is:

Subgraph 1: (1, 2, 3, 4, 5)

Subgraph 2: {6, 7, 8, 9, 10}

Merit Index of Decomposition: M* = .6267,

Example 3

Number of nodes = 10

Number of links = 13

Note 1: The density contours are in parentheses.

-6-,

Three Branching Clusters; best partition is:

Subgraph 1: 1, 2, 3, 4}

Subgraph 2: {5, 6, 71

Subgraph 3: (8, 9, 101
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Merit Index of Decomposition: M* = 7394,,

Example 4

Number of nodes = 10

Number of links = 13

Note 1: The density contours are in parentheses.

Note 2: This is a weighted graph. (average weight per link = .57)

.11

Three Branching Clusters; best partition is:

Subgraph 1: {I, 2, 3, 4

S5 5

*Subgraph 2: {8, 9, 10}

Subgraph 3: {5, 6, 71

with M* = .4240,

Alternative Solution (best partition for two subgraphs)
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Subgraph 1: (1, 2, 3, 4, 8, 9, 101

Subgraph 2: {5, 6, 71

with M* = .1236.,

Example 5

Number of nodes = 11

Number of links = 16

Note 1: The density contours are in parentheses.

(.40.4

-I |Three Branching Clusters; best partition is:

Subgraph 1: {2*, 4, 7} *-assigned by rule at level B.I
i Subgraph 2: {2, 3}

Subgraph 3: {5, 6, 8, 9, 10, 111

with M* = .1338.

Alternative Solution (best partition for two subgraphs)

Subgraph 1: {, 2, 3, 4, 71

Subgraph 2: {5, 6, 8, 9, 10, 11}

with M* = .1500,.

f

r '
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_ f l e 6

Number of nodes = 11

Number of linsk = 16

Note 1: The density contours are in parentheses.

Note 2: This is a weighted graph. (average weight per link .51)

Four Branching Clusters; best partition is:

Subgraph 1: 2, 4, 7

Subgraph 2: 1, 3

Subgraph 3: 5, 6, 10

Subgraph 4: 8*, 9, 11 *-assigned by rule at level A.

with M* = .3089,,

Alternative Solutions (best partition for two and three subgraphs)

' Subgraph 1: {1, 2, 3, 4, 7} Subgraph 1: {, 2, 3, 4, 71

Subgraph 2: {5, 6, 8*, 9, 10, 11} Subgraph 2: {5, 6, I0}

with M* .0945, Subgraph 3: {8*, 9, 11}

with M* = .1612,
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Example 7

Number of nodes = 13

Number of links = 20

Note 1: The density contours are in parentheses.

I Ci

z 75)

0 d'z-75

Three Branching Clusters; best partition is:

Subgraph 1: t9, 10, 11, 12, 13*1 *-assigned by rule at level A

Subgraph 2: {4, 5, 6, 7, 8**} **-assigned by rule at level C

Subgraph 3: fl, 2, 3}

with M* = .4840.

Alternative Solution (best partition for two subgraphs):

4 .Subgraph 1: {4, 5, 6, 7, 8, 9, 10, 11, 12, 131

Subgraph 2: {1, 2, 31

with M* = .1829,,

Alternative Solution (best partition with size constraint: size > 3):

d Subgraph 1: {1, 2, 3, 4, 5, 6, 7, 8**}

Subgraph 2: {9, 10, 11, 12, 13}

with M* = .2093..

f



-20-

Example 8

Number of nodes = 13

Number of links = 20

Note 1: The density contours are in parentheses

Note 2: This is a weighted graph (average weight per link = .505)

3 ..2.5

Three Branching Clusters; best partition is:

Subgraph 1: {9, 10, 11, 12, 13*) *-assigned by rule at level A

Subgraph 2: {4, 5, 6, 7, 81

Subgraph 3: {1, 2, 3)

with M* = .2343,,

Alternative Solution (best partition for two subgraphs):

Subgraph 1. {4, 5, 6, 7, 8, 9, 10, 11, 12, 13*

Subgraph 2: {1, 2, 3)

with M* = .0783.

Alternative Solution (best partition with constraint = size > 3):

Subgraph 1: {, 2, 3, 4, 5, 6, 7, 8}

Subgraph 2: {9, 10, 11, 12, 13}

with M* = .1323,

1 I
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Example 9

Number of nodes = 22

Number of links =39

Note 1: The density contours are in parentheses

Note 2: This real example is taken from a design problem in Andreu (1978).

3) ) (75)

C .50

A 5

.4 II

Y Z 
f e 't
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Six Branching Clusters; best partition is:

Subgraph 1: {7, 13, 14, 151

Subgraph 2: {1, 2, 3, 5}

Subgraph 3: {6, 9, 21}

Subgraph 4: {4, 16, 17, 18, 22}

Subgraph 5: {10, 11, 19, 20}

Subgraph 6: {8, 12)

with M* = .6947,,

Alternative Solution (best partition with constraint = size > 2; also the

best partition for five subgraphs):

Subgraph 1: {7, 13, 14, 151

Subgraph 2: {1, 2, 3, 5}

Subgraph 3: {6, 9, 21)

Subgraph 4: {4, 16, 17, 18, 22}

Subgraph 5: {8, 10, 11, 12, 19, 20}

with M* = .6272,,

Example 10

Number of nodes = 22

Number of links = 39

Note 1: The density contours are in parentheses

Note 2: This is a weighted graph. (average weight per link =.4769)

Note 3: This real example is taken from a design problem in Huff (1979).

V
~I
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Example 10

Four Branching Clusters; best partition is:

Subgraph 1: {1, 2, 3, 5, 6, 21*} *-assigned by rule at level A

Subgraph 2: {7, 13*, 14*, 15}

Subgraph 3: {4, 16, 17, 18, 22}

Subgraph 4: {8, 9, 10, 11, 12, 19, 20}

with M* = .1848,,

Alternative Solution (best three subgraph partition):

Subgraph 1: {1, 2, 3, 5, 6, 7, 13*, 14*, 15, 21}

Subgraph 2: {4, 16, 17, 18, 221

Subgraph 3: 18, 9, 10, 11, 12, 19, 20)

with M* = .0949,,

_Example 11

Number of nodes = 8

Number of links = 15

Note 1: The density contours are in parentheses

(5D)

K(3S)

,.i. " q(50)
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Two Branching Clusters; best partition is:

Subgraph 1: {1, 2, 3, 5*, 6} *-assigned by rule at level B

Subgraph 2: {4, 7, 8*} **-assigned by rule at level A

with M* = .4476,

Example 12

Number of nodes = 8

Number of links = 15

Note 1: The density contours are in parentheses

Note 2: This is a weighted graph. (average weight per link - .6067)

Note 3: This example is taken from Christofides and Brooker (1976).

A-----
.5) (.5

i j,4

Two Branching Clusters; best partition is:

Subgraph 1: {1, 2, 3*, 5, 6) *-assigned by rule at level A

Subgraph 2: {4, 7, 8}

S ,with M* = .3052,

1'

i w
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Example 
13

Number of nodes = 13

Number of links = 16

Note 1: The density contours are in parentheses

1 5

/ \c) c' .15

3T,

Four Branching Clusters; best partition is:

Subgraph 1: 11, 5, 121

Subgraph 2: {2, 6, 7}

Subgraph 3: {3, 8, 9}

Subgraph 4: {4, 10, 11, 13*} *-assigned by rule at level C

with M* = .6190,,

*
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Example 14

Number of nodes = 9

Number of links = 20

Note 1: The density contours are in parentheses.

Note 2: This example is taken from Sangiovanni-Vincentelli et. al. (1977).

Two Branching Clusters; best partition is:

Subgraph 1: {1, 2, 3, 4, 5"} *-assigned by rule at level C

Subgraph 2: {6, 7, 8, 9}

with M* = .8000.,

Example 15

Number of nodes = 11

Number of links = 23

Note 1: The density contours are in parentheses

Note 2: This example is taken from Sangiovanni-Vincentelli et. al. (1977).

4

I
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Three Branching Clusters; best partition is:

Subgraph 1: {, 2, 3, 4, 5*} *-assigned by rule at level C

Subgraph 2: {6, 7, 8, 91

Subgraph 3: {10, 11)

with M* = .8421,.

Alternative Solution (best two-subgraph partition):

Subgraph 1: {1, 2, 3, 4, 5, 10, 11}

Subgraph 2: {6, 7, 8, 9}

with M* = .4128,

ExampLe 16

Number of nodes = 25

Number of links = 44

Note 1: The density contours are in parentheses

Note 2: This example is taken from Sangiovanni-Vincentelli et. al. (1977).

J, ,.
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Four Branching Clusters; best partition is:

Subgraph 1: (1, 2, 3, 4, 5, 6, 71

Subgraph 2: {8, 9, 10, 11}

Subgraph 3: 12, 13, 14, 15, 16, 17, 18}

Subgraph 4: {19, 20, 21, 22, 23, 24, 251

with M* = .3281,,

Example 17

Number of nodes = 40

Number of links = 70

Note 1: The density contours are in parenthesis

Note 2: This is an extreme example in that there is really no major high-

,4 density clusters.

"!
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(3T (3 k ..

-(.33) ( -5 (3T{ v

i) (.3 (33) (33) 1(33) .3

((33j kq C3 W(33)

(3) (?, j(.43

Two small minor branching high-density clusters; the assignments of the

remaining nodes are completely arbitrary.

Example 18

Number of nodes = 40

Number of links = 60

Note 1: The density contours are in parentheses

Note 2: This is a weighted graph. (average weight per graph .46)

[9g
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4 Note 1: The density contours are not included here

Note 2: This example is taken from Sanqiovanni-Vincentelli et. al. (1977)

.3.1

Four Branching Clusters; best partition is:

Subgraph 1: {1, 2, 13, 14, 15, 25, 26, 37, 41, 42}

Subgraph 2: {3*, 4, 5, 16, 17, 18, 27*, 28, 29, 38, 43*, 44, 45) *-assigned by
rule at level C

Subgraph 3: {6*, 7, 8, 19, 20, 21, 30*, 31, 32, 39, 46*, 47, 48)

Subgraph 4: {9*, 10, 11, 22, 23, 24, 33*, 34, 35, 36, 40, 49*, 50, 511

with M* =.2207.,
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4. Discussion

A new algorithm for partitioning a graph into strongly coherent sub-

graphs, which are separated from one another by relatively few links, has

been developed. The algorithm functions by extracting the appropriate

partition from the tree of high-density clusters, a concept which is

formalized in this report. The numerous examples included serve to illustrate

the effectiveness of this decomposition technique. We believe that the

high-density clustering concept is a useful contribution to the general

graph decomposition methodology, as other existing techniques are directly

or indirectly related to it; its relationships with other density-related

techniques are pointed out in Section 2.2, and it is not difficult to see

that finding the partition with the minimum sum of weights of the cross-

links is equivalent to cutting the graph at some "low-density" links.

In later studies, we intend to examine the computational efficiency

(which is known to be bounded by Q('l oa'ns cf this new approach

and to explore its utility and e-Fecti.c-t' j- or real design problems.

t;.~
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